Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.123
Filtrar
1.
Zhonghua Bing Li Xue Za Zhi ; 53(4): 344-350, 2024 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-38556817

RESUMO

Objective: To investigate the clinicopathological features, immunophenotype and molecular genetic characteristics of congenital spindle cell/sclerosing rhabdomyosarcoma. Methods: Sixteen cases (including 10 consultation cases) of congenital spindle cell/sclerosing rhabdomyosarcoma diagnosed at the Beijing Children's Hospital, Capital Medical University, Beijing China, from April 2017 to January 2022 were collected. These cases were evaluated for clinical profiles, histomorphological features, immunophenotype and molecular characteristics. Results: Among the 16 patients, 9 were male and 7 were female. Five cases were present during maternal pregnancy and 11 cases were found immediately after birth. The tumors were located in the chest wall, low back, retroperitoneum, extremities or perineum. The tumors consisted of fasciculated spindle-shaped cells with localized mesenchymal sclerosis and vitreous metaplasia. Immunohistochemistry showed that the tumor cells expressed Desmin, Myogenin, MyoD1, SMA, CD56 and ALK to varying degrees, but not other markers such as CD34, CD99, pan-TRK, S-100 and BCOR. FISH analyses with NCOA2 (8q13) and VGLL2 (6q22) gene breakage probes revealed a breakage translocation in chromosome NCOA2 (8q13) in 4 cases (4/11). In the 6 cases subject to sequencing, a mutation at the p.L122R locus of MYOD1 gene was detected in 1 case (1/6). Two cases were examined by electron microscopy, which showed bundle-arranged myofilaments with some primitive myofilament formation. Five cases were resected with simple surgery, 2 cases were biopsied and followed up with observation only, and 9 cases were treated with surgery and adjuvant chemotherapy. Follow-up was available in 12 cases. At the end of the follow-up, 2 of the 12 patients developed local recurrences and 2 patients survived with disease. Conclusions: Congenital spindle cell/sclerosing rhabdomyosarcoma is a rare subtype of congenital rhabdomyosarcoma. It more commonly occurs in the chest, back and lower limbs of infants than other sites. NCOA2/VGLL2 gene fusion seems to be the most common genetic change. Its prognosis is better than other subtypes of rhabdomyosarcoma and those in adolescents and adults with the same subtype. Analysis and summary of its clinicopathological features can help differentiate it from other soft tissue tumors in infants and children and provide the information for appropriate treatments.


Assuntos
Rabdomiossarcoma , Neoplasias de Tecidos Moles , Adulto , Criança , Lactente , Adolescente , Humanos , Masculino , Feminino , Rabdomiossarcoma/genética , Fatores de Transcrição/genética , Neoplasias de Tecidos Moles/patologia , Mutação , Prognóstico
2.
JCO Precis Oncol ; 8: e2300597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603649

RESUMO

PURPOSE: Alterations of the NF1 tumor suppressor gene is the second most frequent genetic event in embryonal rhabdomyosarcoma (ERMS), but its associations with clinicopathologic features, outcome, or coexisting molecular events are not well defined. Additionally, NF1 alterations, mostly in the setting of neurofibromatosis type I (NF1), drive the pathogenesis of most malignant peripheral nerve sheath tumor with divergent RMS differentiation (also known as malignant triton tumor [MTT]). Distinguishing between these entities can be challenging because of their pathologic overlap. This study aims to comprehensively analyze the clinicopathologic and molecular spectrum of NF1-mutant RMS compared with NF1-associated MTT for a better understanding of their pathogenesis. METHODS: We investigated the clinicopathologic and molecular landscape of a cohort of 22 NF1-mutant RMS and a control group of 13 NF1-associated MTT. Cases were tested on a matched tumor-normal hybridization capture-based targeted DNA next-generation sequencing. RESULTS: Among the RMS group, all except one were ERMS, with a median age of 17 years while for MTT the mean age was 39 years. Three MTTs were misdiagnosed as ERMS, having clinical impact in one. The most frequent coexisting alteration in ERMS was TP53 abnormality (36%), being mutually exclusive from NRAS mutations (14%). MTT showed coexisting CDKN2A/B and PRC2 complex alterations in 38% cases and loss of H3K27me3 expression. Patients with NF1-mutant RMS exhibited a 70% 5-year survival rate, in contrast to MTT with a 33% 5-year survival. All metastatic NF1-mutant ERMS were associated with TP53 alterations. CONCLUSION: Patients with NF1-mutant ERMS lacking TP53 alterations may benefit from dose-reduction chemotherapy. On the basis of the diagnostic challenges and significant treatment and prognostic differences, molecular profiling of challenging tumors with rhabdomyoblastic differentiation is recommended.


Assuntos
Neurofibromatose 1 , Neurofibrossarcoma , Rabdomiossarcoma , Sarcoma , Neoplasias Cutâneas , Humanos , Adulto , Adolescente , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Neurofibromatose 1/complicações , Neurofibrossarcoma/diagnóstico , Neurofibrossarcoma/genética , Neurofibrossarcoma/complicações , Rabdomiossarcoma/diagnóstico , Rabdomiossarcoma/genética , Fenótipo
3.
Genes Chromosomes Cancer ; 63(4): e23232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38607246

RESUMO

The wide application of RNA sequencing in clinical practice has allowed the discovery of novel fusion genes, which have contributed to a refined molecular classification of rhabdomyosarcoma (RMS). Most fusions in RMS result in aberrant transcription factors, such as PAX3/7::FOXO1 in alveolar RMS (ARMS) and fusions involving VGLL2 or NCOA2 in infantile spindle cell RMS. However, recurrent fusions driving oncogenic kinase activation have not been reported in RMS. Triggered by an index case of an unclassified RMS (overlapping features between ARMS and sclerosing RMS) with a novel FGFR1::ANK1 fusion, we reviewed our molecular files for cases harboring FGFR1-related fusions. One additional case with an FGFR1::TACC1 fusion was identified in a tumor resembling embryonal RMS (ERMS) with anaplasia, but with no pathogenic variants in TP53 or DICER1 on germline testing. Both cases occurred in males, aged 7 and 24, and in the pelvis. The 2nd case also harbored additional alterations, including somatic TP53 and TET2 mutations. Two additional RMS cases (one unclassified, one ERMS) with FGFR1 overexpression but lacking FGFR1 fusions were identified by RNA sequencing. These two cases and the FGFR1::TACC1-positive case clustered together with the ERMS group by RNAseq. This is the first report of RMS harboring recurrent FGFR1 fusions. However, it remains unclear if FGFR1 fusions define a novel subset of RMS or alternatively, whether this alteration can sporadically drive the pathogenesis of known RMS subtypes, such as ERMS. Additional larger series with integrated genomic and epigenetic datasets are needed for better subclassification, as the resulting oncogenic kinase activation underscores the potential for targeted therapy.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma Embrionário , Rabdomiossarcoma , Masculino , Humanos , Adulto , Criança , Rabdomiossarcoma/genética , Rabdomiossarcoma Embrionário/genética , Epigenômica , Genômica , Ribonuclease III , RNA Helicases DEAD-box , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
4.
JAMA Netw Open ; 7(3): e244170, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38546643

RESUMO

Importance: Determining the impact of germline cancer-predisposition variants (CPVs) on outcomes could inform novel approaches to testing and treating children with rhabdomyosarcoma. Objective: To assess whether CPVs are associated with outcome among children with rhabdomyosarcoma. Design, Setting, and Participants: In this cohort study, data were obtained for individuals, aged 0.01-23.23 years, newly diagnosed with rhabdomyosarcoma who were treated across 171 Children's Oncology Group sites from March 15, 1999, to December 8, 2017. Data analysis was performed from June 16, 2021, to May 15, 2023. Exposure: The presence of a CPV in 24 rhabdomyosarcoma-associated cancer-predisposition genes (CPGs) or an expanded set of 63 autosomal-dominant CPGs. Main Outcomes and Measures: Overall survival (OS) and event-free survival (EFS) were the main outcomes, using the Kaplan-Meier estimator to assess survival probabilities and the Cox proportional hazards regression model to adjust for clinical covariates. Analyses were stratified by tumor histology and the fusion status of PAX3 or PAX7 to the FOXO1 gene. Results: In this study of 580 individuals with rhabdomyosarcoma, the median patient age was 5.9 years (range, 0.01-23.23 years), and the male-to-female ratio was 1.5 to 1 (351 [60.5%] male). For patients with CPVs in rhabdomyosarcoma-associated CPGs, EFS was 48.4% compared with 57.8% for patients without a CPV (P = .10), and OS was 53.7% compared with 65.3% for patients without a CPV (P = .06). After adjustment, patients with CPVs had significantly worse OS (adjusted hazard ratio [AHR], 2.49 [95% CI, 1.39-4.45]; P = .002), and the outcomes were not better among patients with embryonal histology (EFS: AHR, 2.25 [95% CI, 1.25-4.06]; P = .007]; OS: AHR, 2.83 [95% CI, 1.47-5.43]; P = .002]). These associations were not due to the development of a second malignant neoplasm, and importantly, patients with fusion-negative rhabdomyosarcoma who harbored a CPV had similarly inferior outcomes as patients with fusion-positive rhabdomyosarcoma without CPVs (EFS: AHR, 1.35 [95% CI, 0.71-2.59]; P = .37; OS: AHR, 1.71 [95% CI, 0.84-3.47]; P = .14). There were no significant differences in outcome by CPV status of the 63 CPG set. Conclusions and Relevance: This cohort study identified a group of patients with embryonal rhabdomyosarcoma who had a particularly poor outcome. Other important clinical findings included that individuals with TP53 had poor outcomes independent of second malignant neoplasms and that patients with fusion-negative rhabdomyosarcoma who harbored a CPV had outcomes comparable to patients with fusion-positive rhabdomyosarcoma. These findings suggest that germline CPV testing may aid in clinical prognosis and should be considered in prospective risk-based clinical trials.


Assuntos
Segunda Neoplasia Primária , Rabdomiossarcoma , Criança , Humanos , Feminino , Masculino , Estudos de Coortes , Estudos Prospectivos , Rabdomiossarcoma/genética , Rabdomiossarcoma/terapia , Testes Genéticos , Células Germinativas
5.
Methods Mol Biol ; 2779: 273-286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526790

RESUMO

Oncogenic fusion genes are attractive therapeutic targets because of their tumor-specific expression and central "driver" roles in various human cancers. However, oncogenic fusions involving transcription factors such as PAX3-FOXO1 in alveolar fusion gene-positive rhabdomyosarcoma (FP-RMS) have been difficult to inhibit due to the apparent lack of tractable drug-like binding sites comparable to that recognized by Gleevec (imatinib mesylate) on the BCR-ABL1 tyrosine kinase fusion protein. Toward the identification of novel small molecules that selectively target PAX3-FOXO1, we used CRISPR-Cas9-mediated knock-in to append the pro-luminescent HiBiT tag onto the carboxy terminus of the endogenous PAX3-FOXO1 fusion protein in two human FP-RMS cell lines (RH4 and SCMC). HiBiT is an 11-amino acid peptide derived from the NanoLuc luciferase that produces a luminescence signal which is ~100-fold brighter than firefly or Renilla luciferases through high-affinity binding to a complementary NanoLuc peptide fragment called LgBiT. To facilitate single-cell clonal isolation of knock-ins, the homology-directed repair template encoding HiBiT was followed by a P2A self-cleaving peptide for coexpression of an mCherry fluorescent protein as a fluorescence-activated cell sorter (FACS)-selectable marker. HiBiT tagging thus allows highly sensitive luminescence detection of endogenous PAX3-FOXO1 levels permitting quantitative high-throughput screening of large compound libraries for the discovery of PAX3-FOXO1 inhibitors and degraders.


Assuntos
Fatores de Transcrição Box Pareados , 60598 , Rabdomiossarcoma , Humanos , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Sistemas CRISPR-Cas , Rabdomiossarcoma/genética , Peptídeos/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
6.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474036

RESUMO

Alveolar rhabdomyosarcoma (ARMS), an invasive subtype of rhabdomyosarcoma (RMS), is associated with chromosomal translocation events resulting in one of two oncogenic fusion genes, PAX3-FOXO1 or PAX7-FOXO1. ARMS patients exhibit an overexpression of the pleiotropic cytokine transforming growth factor beta (TGF-ß). This overexpression of TGF-ß1 causes an increased expression of a downstream transcription factor called SNAIL, which promotes epithelial to mesenchymal transition (EMT). Overexpression of TGF-ß also inhibits myogenic differentiation, making ARMS patients highly resistant to chemotherapy. In this review, we first describe different types of RMS and then focus on ARMS and the impact of TGF-ß in this tumor type. We next highlight current chemotherapy strategies, including a combination of the FDA-approved drugs vincristine, actinomycin D, and cyclophosphamide (VAC); cabozantinib; bortezomib; vinorelbine; AZD 1775; and cisplatin. Lastly, we discuss chemotherapy agents that target the differentiation of tumor cells in ARMS, which include all-trans retinoic acid (ATRA) and 5-Azacytidine. Improving our understanding of the role of signaling pathways, such as TGF-ß1, in the development of ARMS tumor cells differentiation will help inform more tailored drug administration in the future.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Humanos , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta1 , Fatores de Transcrição Box Pareados/genética , Transição Epitelial-Mesenquimal , Rabdomiossarcoma/genética , Proteínas de Fusão Oncogênica/genética
7.
Nat Commun ; 15(1): 1703, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402212

RESUMO

Fusion-positive rhabdomyosarcoma (FP-RMS) is an aggressive pediatric sarcoma driven primarily by the PAX3-FOXO1 fusion oncogene, for which therapies targeting PAX3-FOXO1 are lacking. Here, we screen 62,643 compounds using an engineered cell line that monitors PAX3-FOXO1 transcriptional activity identifying a hitherto uncharacterized compound, P3FI-63. RNA-seq, ATAC-seq, and docking analyses implicate histone lysine demethylases (KDMs) as its targets. Enzymatic assays confirm the inhibition of multiple KDMs with the highest selectivity for KDM3B. Structural similarity search of P3FI-63 identifies P3FI-90 with improved solubility and potency. Biophysical binding of P3FI-90 to KDM3B is demonstrated using NMR and SPR. P3FI-90 suppresses the growth of FP-RMS in vitro and in vivo through downregulating PAX3-FOXO1 activity, and combined knockdown of KDM3B and KDM1A phenocopies P3FI-90 effects. Thus, we report KDM inhibitors P3FI-63 and P3FI-90 with the highest specificity for KDM3B. Their potent suppression of PAX3-FOXO1 activity indicates a possible therapeutic approach for FP-RMS and other transcriptionally addicted cancers.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Criança , Humanos , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Rabdomiossarcoma Alveolar/genética , Linhagem Celular Tumoral , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases/metabolismo
8.
BMC Cancer ; 24(1): 79, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225540

RESUMO

BACKGROUND: GEFT is a key regulator of tumorigenesis in rhabdomyosarcoma (RMS), and overexpression of GEFT is significantly correlated with distant metastasis, lymph node metastasis, and a poor prognosis, yet the underlying molecular mechanism is still poorly understood. This study aimed to investigate and validate the molecular mechanism of GEFT-activated lncRNAs in regulating mTOR expression to promote the progression of RMS. METHODS: GEFT-regulated lncRNAs were identified through microarray analysis. The effects of GEFT-regulated lncRNAs on the proliferation, apoptosis, invasion, and migration of RMS cells were confirmed through cell functional experiments. The target miRNAs of GEFT-activated lncRNAs in the regulation of mTOR expression were predicted by bioinformatics analysis combined with quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The expression of lnc-PSMA8-1, miR-144-3p, and mTOR was measured by qRT-PCR in RMS tissue samples and cell lines. The regulatory mechanisms of the lnc-PSMA8-1-miR-144-3p-mTOR signaling axis were verified by RNA-binding protein immunoprecipitation (RIP), a luciferase reporter assay, qRT-PCR analysis, Western blot analysis, and cell functional experiments. RESULTS: The microarray-based analysis identified 31 differentially expressed lncRNAs (fold change > 2.0, P < 0.05). Silencing the 4 upregulated lncRNAs (lnc-CEACAM19-1, lnc-VWCE-2, lnc-GPX7-1, and lnc-PSMA8-1) and overexpressing the downregulated lnc-FAM59A-1 inhibited the proliferation, invasion, and migration and induced the apoptosis of RMS cells. Among the factors analyzed, the expression of lnc-PSMA8-1, miR-144-3p, and mTOR in RMS tissue samples and cells was consistent with the correlations among their expression indicated by the lncRNA-miRNA-mRNA regulatory network based on the ceRNA hypothesis. lnc-PSMA8-1 promoted RMS progression by competitively binding to miR-144-3p to regulate mTOR expression. CONCLUSION: Our research demonstrated that lnc-PSMA8-1 was activated by GEFT and that the former positively regulated mTOR expression by sponging miR-144-3p to promote the progression of RMS. Therefore, targeting this network may constitute a potential therapeutic approach for the management of RMS.


Assuntos
MicroRNAs , RNA Longo não Codificante , Rabdomiossarcoma , Serina-Treonina Quinases TOR , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima
9.
EMBO Rep ; 25(2): 832-852, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191874

RESUMO

BRD4, a bromodomain and extraterminal (BET) protein, is deregulated in multiple cancers and has emerged as a promising drug target. However, the function of the two main BRD4 isoforms (BRD4-L and BRD4-S) has not been analysed in parallel in most cancers. This complicates determining therapeutic efficacy of pan-BET inhibitors. In this study, using functional and transcriptomic analysis, we show that BRD-L and BRD4-S isoforms play distinct roles in fusion negative embryonal rhabdomyosarcoma. BRD4-L has an oncogenic role and inhibits myogenic differentiation, at least in part, by activating myostatin expression. Depletion of BRD4-L in vivo impairs tumour progression but does not impact metastasis. On the other hand, depletion of BRD4-S has no significant impact on tumour growth, but strikingly promotes metastasis in vivo. Interestingly, BRD4-S loss results in the enrichment of BRD4-L and RNA Polymerase II at integrin gene promoters resulting in their activation. In fusion positive alveolar rhabdomyosarcoma, BRD4-L is unrestricted in its oncogenic role, with no evident involvement of BRD4-S. Our work unveils isoform-specific functions of BRD4 in rhabdomyosarcoma.


Assuntos
Rabdomiossarcoma , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Isoformas de Proteínas/genética , Rabdomiossarcoma/genética , Proteínas que Contêm Bromodomínio
10.
BMC Ophthalmol ; 24(1): 47, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291358

RESUMO

BACKGROUND: Retinoblastoma (rb) is the most frequent intraocular tumor, accounting for 3% of all childhood cancers. Heritable rb survivors are germline carriers for an RB1 mutation and have a lifelong risk to develop non-ocular second primary tumors (SPTs) involving multiple other organs like the bones, soft tissues, or skin. These SPTs usually become manifest several years succeeding the diagnosis of rb. In our instance, however, a non-ocular SPT presented prior to the diagnosis of heritable rb. CASE PRESENTATION: We report a rare case of a monozygotic twin who presented with primary rhabdomyosarcoma (RMS) preceding the manifestation of heritable rb. The rb was diagnosed when the child developed strabismus while already on therapy for the RMS. The child underwent therapy for both as per defined treatment protocols. The rb regressed well on treatment, but the RMS relapsed and the child developed multiple refractory metastatic foci and succumbed to his disease. CONCLUSIONS: Non-ocular SPTs like sarcomas are usually known to manifest in heritable rb survivors with a lag of two to three decades (earlier if exposure to radiation is present) from the presentation of the rb. However, in our case, this seemed to be reversed with the RMS being manifest at an unusual early age and the rb being diagnosed at a later point in time.


Assuntos
Segunda Neoplasia Primária , Neoplasias da Retina , Retinoblastoma , Rabdomiossarcoma , Criança , Humanos , Mutação , Segunda Neoplasia Primária/diagnóstico , Segunda Neoplasia Primária/genética , Neoplasias da Retina/diagnóstico , Neoplasias da Retina/genética , Neoplasias da Retina/patologia , Retinoblastoma/diagnóstico , Retinoblastoma/genética , Retinoblastoma/patologia , Rabdomiossarcoma/diagnóstico , Rabdomiossarcoma/genética , Gêmeos Monozigóticos
11.
Proc Natl Acad Sci U S A ; 121(4): e2315925121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227654

RESUMO

Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and adolescents. Fusion-negative RMS (FN-RMS) accounts for more than 80% of all RMS cases. The long-term event-free survival rate for patients with high-grade FN-RMS is below 30%, highlighting the need for improved therapeutic strategies. CD73 is a 5' ectonucleotidase that hydrolyzes AMP to adenosine and regulates the purinergic signaling pathway. We found that CD73 is elevated in FN-RMS tumors that express high levels of TWIST2. While high expression of CD73 contributes to the pathogenesis of multiple cancers, its role in FN-RMS has not been investigated. We found that CD73 knockdown decreased FN-RMS cell growth while up-regulating the myogenic differentiation program. Moreover, mutation of the catalytic residues of CD73 rendered the protein enzymatically inactive and abolished its ability to stimulate FN-RMS growth. Overexpression of wildtype CD73, but not the catalytically inactive mutant, in CD73 knockdown FN-RMS cells restored their growth capacity. Likewise, treatment with an adenosine receptor A2A-B agonist partially rescued FN-RMS cell proliferation and bypassed the CD73 knockdown defective growth phenotype. These results demonstrate that the catalytic activity of CD73 contributes to the pathogenic growth of FN-RMS through the activation of the purinergic signaling pathway. Therefore, targeting CD73 and the purinergic signaling pathway represents a potential therapeutic approach for FN-RMS patients.


Assuntos
Rabdomiossarcoma , Adolescente , Criança , Humanos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Receptores Purinérgicos P1 , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Transdução de Sinais
13.
Biosystems ; 235: 105093, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052344

RESUMO

Sarcoma cancers are uncommon malignant tumors, and there are many subgroups, including fibrosarcoma (FS), which mainly affects middle-aged and older adults in deep soft tissues. Rhabdomyosarcoma (RMS), on the other hand, is the most common soft-tissue sarcoma in children and is located in the head and neck area. Osteosarcomas (OS) is the predominant form of primary bone cancer among young adults, primarily resulting from sporadically random mutations. This frequently results in the dissemination of cancer cells to the lungs, commonly known as metastasis. Mesodermal cells are the origin of sarcoma cancers. In this study, a rather radical approach has been applied. Instead of comparing homogenous cancer types, we focus on three main subtypes of sarcoma: fibrosarcoma, rhabdomyosarcoma, and osteosarcoma, and compare their gene expression with normal cell groups to identify the differentially expressed genes (DEGs). Next, by applying protein-protein interaction (PPI) network analysis, we determine the hub genes and crucial factors, such as transcription factors (TFs), affected by these types of cancer. Our findings indicate a modification in a range of pathways associated with cell cycle, extracellular matrix, and DNA repair in these three malignancies. Results showed that fibrosarcoma (FS), rhabdomyosarcoma (RMS), and osteosarcoma (OS) had 653, 1270, and 2823 differentially expressed genes (DEGs), respectively. Interestingly, there were 24 DEGs common to all three types. Network analysis showed that the fibrosarcoma network had two sub-networks identified in FS that contributed to the catabolic process of collagen via the G-protein coupled receptor signaling pathway. The rhabdomyosarcoma network included nine sub-networks associated with cell division, extracellular matrix organization, mRNA splicing via spliceosome, and others. The osteosarcoma network has 13 sub-networks, including mRNA splicing, sister chromatid cohesion, DNA repair, etc. In conclusion, the common DEGs identified in this study have been shown to play significant and multiple roles in various other cancers based on the literature review, indicating their significance.


Assuntos
Neoplasias Ósseas , Fibrossarcoma , Osteossarcoma , Rabdomiossarcoma , Sarcoma , Criança , Pessoa de Meia-Idade , Humanos , Idoso , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Rabdomiossarcoma/genética , Fibrossarcoma/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , RNA Mensageiro/genética
14.
Mod Pathol ; 37(1): 100359, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37871654

RESUMO

Inflammatory rhabdomyoblastic tumors (IRMTs) are newly recognized skeletal muscle tumors with uncertain malignant potential. We investigated 13 IRMTs using clinicopathologic, genetic, and epigenetic methods. The cohort included 7 men and 6 women, aged 23 to 80 years (median, 50 years), of whom 2 had neurofibromatosis type 1. Most tumors occurred in the deep soft tissues of the lower limbs, head/neck, trunk wall, and retroperitoneum/pelvis. Two tumors involved the hypopharyngeal submucosa as polypoid masses. Eight tumors showed conventional histology of predominantly spindled cells with nuclear atypia, low mitotic activity, and massive inflammatory infiltrates. Three tumors showed atypical histology, including uniform epithelioid or plump cells and mitotically active histiocytes. The remaining 2 tumors demonstrated malignant progression to rhabdomyosarcoma; one had additional IRMT histology and the other was a pure sarcoma. All 11 IRMTs without malignant progression exhibited indolent behavior at a median follow-up of 43 months. One of the 2 patients with IRMTs with malignant progression died of lung metastases. All IRMTs were positive for desmin and PAX7, whereas myogenin and MyoD1 were expressed in a subset of cases. Targeted next-generation sequencing identified pathogenic mutations in NF1 (5/8) and TP53 (4/8). All TP53 mutations co-occurred with NF1 mutations. TP53 variant allele frequency was much lower than that of NF1 in 2 cases. These tumors showed geographic (subclonal) strong p53 immunoreactivity, suggesting the secondary emergence of a TP53-mutant clone. DNA methylation-based copy number analysis conducted in 11 tumors revealed characteristic flat patterns with relative gains, including chromosomes 5, 18, 20, 21, and/or 22 in most cases. Widespread loss of heterozygosity with retained biparental copies of these chromosomes was confirmed in 4 tumors analyzed via allele-specific profiling. Based on unsupervised DNA methylation analysis, none of the 11 tumors tested clustered with existing reference entities but formed a coherent group, although its specificity warrants further study.


Assuntos
Neoplasias Musculares , Neurofibromatose 1 , Rabdomiossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Masculino , Humanos , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Sarcoma/patologia , Neoplasias de Tecidos Moles/genética
15.
J Clin Oncol ; 42(6): 675-685, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37967293

RESUMO

Soft tissue sarcomas (STS) represent a heterogeneous group of extraskeletal mesenchymal tumors that affect individuals throughout the entire age continuum. Despite this pervasive influence, key differences exist in the presentation of these sarcomas across varying age groups that have prevented a more uniform approach to management. Notably, rhabdomyosarcoma (RMS) is more common in children, while most nonrhabdomyosarcoma soft tissue sarcoma (NRSTS) subtypes are more prevalent in adults. Older patients with NRSTS appear to have more molecularly complex biology and often present with more advanced disease compared with children. Poorer outcome disparities are observed in older patients with RMS despite receiving similar treatment as younger patients. In this review, we highlight differences in epidemiology, biology, and management paradigms for pediatric and adult patients with STS and explore opportunities for a unified approach to enhance the care and outcomes within the AYA population.


Assuntos
Rabdomiossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Criança , Humanos , Adolescente , Adulto Jovem , Idoso , Sarcoma/terapia , Sarcoma/tratamento farmacológico , Rabdomiossarcoma/epidemiologia , Rabdomiossarcoma/genética , Rabdomiossarcoma/terapia , Neoplasias de Tecidos Moles/epidemiologia , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/terapia
16.
Histopathology ; 84(5): 776-793, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114270

RESUMO

AIMS: Spindle-cell/sclerosing rhabdomyosarcomas (SS-RMS) are clinically and genetically heterogeneous. They include three well-defined molecular subtypes, of which those with EWSR1/FUS::TFCP2 rearrangements were described only recently. This study aimed to evaluate five new cases of SS-RMS and to perform a clinicopathological and statistical analysis of all TFCP2-rearranged SS-RMS described in the English literature to more comprehensively characterize this rare tumour type. METHODS AND RESULTS: Cases were retrospectively selected and studied by immunohistochemistry, fluorescence in situ hybridization with EWSR1/FUS and TFCP2 break-apart probes, next-generation sequencing (Archer FusionPlex Sarcoma kit and TruSight RNA Pan-Cancer Panel). The PubMed database was searched for relevant peer-reviewed English reports. Five cases of SS-RMS were found. Three cases were TFCP2 rearranged SS-RMS, having FUSex6::TFCP2ex2 gene fusion in two cases and triple gene fusion EWSR1ex5::TFCP2ex2, VAX2ex2::ALKex2 and VAX2intron2::ALKex2 in one case. Two cases showed rhabdomyoblastic differentiation and spindle-round cell/sclerosing morphology, but were characterized by novel genetic fusions including EWSR1ex8::ZBTB41ex7 and PLOD2ex8::RBM6ex7, respectively. In the statistical analysis of all published cases, CDKN2A or ALK alterations, the use of standard chemotherapy and age at presentation in the range of 18-24 years were negatively correlated to overall survival. CONCLUSION: EWSR1/FUS::TFCP2-rearranged SS-RMS is a rare rhabdomyosarcoma subtype, affecting predominantly young adults with average age at presentation 34 years (median 29.5 years; age range 7-86 years), with a predilection for craniofacial bones, rapid clinical course with frequent bone and lung metastases, and poor prognosis (3-year overall survival rate 28%).


Assuntos
Rabdomiossarcoma , Fatores de Transcrição , Adulto Jovem , Criança , Humanos , Adulto , Adolescente , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Hibridização in Situ Fluorescente , Estudos Retrospectivos , Fatores de Transcrição/genética , Proteína EWS de Ligação a RNA/genética , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Fusão Gênica , Biomarcadores Tumorais/genética , Proteínas de Ligação a RNA/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Proteínas de Ligação a DNA/genética
17.
Exp Cell Res ; 434(2): 113863, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38097153

RESUMO

Rhabdomyosarcoma (RMS), a tumor that consists of poorly differentiated skeletal muscle cells, is the most common soft-tissue sarcoma in children. Despite considerable progress within the last decades, therapeutic options are still limited, warranting the need for novel approaches. Recent data suggest deregulation of the Smyd1 protein, a sumoylation target as well as H3K4me2/3 methyltransferase and transcriptional regulator in myogenesis, and its binding partner skNAC, in RMS cells. Here, we show that despite the fact that most RMS cells express at least low levels of Smyd1 and skNAC, failure to upregulate expression of these genes in reaction to differentiation-promoting signals can always be observed. While overexpression of the Smyd1 gene enhances many aspects of RMS cell differentiation and inhibits proliferation rate and metastatic potential of these cells, functional integrity of the putative Smyd1 sumoylation motif and its SET domain, the latter being crucial for HMT activity, appear to be prerequisites for most of these effects. Based on these findings, we explored the potential for novel RMS therapeutic strategies, employing small-molecule compounds to enhance Smyd1 activity. In particular, we tested manipulation of (a) Smyd1 sumoylation, (b) stability of H3K4me2/3 marks, and (c) calpain activity, with calpains being important targets of Smyd1 in myogenesis. We found that specifically the last strategy might represent a promising approach, given that suitable small-molecule compounds will be available for clinical use in the future.


Assuntos
Rabdomiossarcoma , Fatores de Transcrição , Criança , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/terapia , Rabdomiossarcoma/patologia , Fibras Musculares Esqueléticas/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral
18.
Nat Commun ; 14(1): 8373, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102140

RESUMO

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS.


Assuntos
Rabdomiossarcoma , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Fatores de Transcrição , Transformação Celular Neoplásica , Diferenciação Celular
19.
Nat Commun ; 14(1): 7291, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968277

RESUMO

Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS. We show that P3F expression in aP2-Cre expressing cells reprograms endothelial progenitors to functional myogenic stem cells capable of regenerating injured muscle fibers. Further, we describe a FP-RMS mouse model driven by P3F expression and Cdkn2a loss in endothelial cells. Additionally, we show that P3F expression in TP53-null human iPSCs blocks endothelial-directed differentiation and guides cells to become myogenic cells that form FP-RMS tumors in immunocompromised mice. Together these findings demonstrate that FP-RMS can originate from aberrant development of non-myogenic cells driven by P3F.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Animais , Criança , Humanos , Camundongos , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Regulação Neoplásica da Expressão Gênica , Músculo Esquelético/metabolismo , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição Box Pareados/genética , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Rabdomiossarcoma Alveolar/genética
20.
Mol Cell Biol ; 43(11): 547-565, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882064

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric malignancy of the muscle with characteristics of cells blocked in differentiation. NOTCH1 is an oncogene that promotes self-renewal and blocks differentiation in the fusion negative-RMS sub-type. However, how NOTCH1 expression is transcriptionally maintained in tumors is unknown. Analyses of SNAI2 and CTCF chromatin binding and HiC analyses revealed a conserved SNAI2/CTCF overlapping peak downstream of the NOTCH1 locus marking a sub-topologically associating domain (TAD) boundary. Deletion of the SNAI2-CTCF peak showed that it is essential for NOTCH1 expression and viability of FN-RMS cells. Reintroducing constitutively activated NOTCH1-ΔE in cells with the SNAI2-CTCF peak deleted restored cell-viability. Ablation of SNAI2 using CRISPR/Cas9 reagents resulted in the loss of majority of RD and SMS-CTR FN-RMS cells. However, the few surviving clones that repopulate cultures have recovered NOTCH1. Cells that re-establish NOTCH1 expression after SNAI2 ablation are unable to differentiate robustly as SNAI2 shRNA knockdown cells; yet, SNAI2-ablated cells continued to be exquisitely sensitive to ionizing radiation. Thus, we have uncovered a novel mechanism by which SNAI2 and CTCF maintenance of a sub-TAD boundary promotes rather than represses NOTCH1 expression. Further, we demonstrate that SNAI2 suppression of apoptosis post-radiation is independent of SNAI2/NOTCH1 effects on self-renewal and differentiation.


Assuntos
Cromatina , Rabdomiossarcoma , Criança , Humanos , Fator de Ligação a CCCTC/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Rabdomiossarcoma/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...